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In this article it is shown that Hill’s method [I] can be applied to the 

investigation of the solutions of a linear differential equation with 

periodic coefficients and with stationary lags in the argument. The pre- 

sentation is made with the aid of a second order differential equation 

with concentrated lags. The presented method can be extended quite ‘easily 

to systems of I equations of the nth order with concentrated and uni- 

formly distributed stationary lags in the argument. 

1. The following equation is considered 

S I 
@y(t) 

dt2 + 2 2 a,,e-iqfy(t-Tk) = 0 

k=O q= 4 

(1.1) 

Here the (1 
kq 

are complex numbers, the TV are real numbers such that 

0 = zo < zr < . . .rs < h, 

and 1 is a positive number. The problem is to find, for positive t. a 

solution y( t) that satisfies the initial conditions 

y(t)=cP(i) (het<o). y (0) = Ye(O), 2 (0) = yo(‘) (1.2) 

The function q(t) is absolutely integrable over h g t <, 0. 

Let f(p) be the Laplace transform [z] of the desired solution of Equa- 

tion (1.1) satisfying the initial conditions (1.2). 
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Solutions of a linear differential equation 1135 

IblUltipiYing (1.1) by emPt and integrating with respect to t between 
the limits 6 and + m, we obtain the difference equation for the deter- 
mination of f(p): 

Rex-e 

The functions bq(p) in (1.4) are bounded in the half-plane Re p > c = 

const. Replacing p in (1.3) by (p + ki) and dividing the obtained differ- 
ence equation by - k2 (k = * 1. ). 2. 5 3, . . . ), we obtain an infinite 
system of linear algebraic equations in the unknowns f(~ f ki): 

- k-a f (p + kq- i ha b, tp + (k + 9) i) f (P + (kf9) i) = - k-a9 (P f W (1.6) 
Qo5-; 

(k = rt: 1, f 2. f 3,.:..) 

The complex variable p in (l-6) and (1.3) will be treated as a para- 
meter. Solving the system of Equations 11.3) and (1.6) by means of 
Cramer’s formula, we obtain 

Here, A(p) denotes the infinite determinant of the system (1.3), (1.6). 

P.6) 

On@ can show that the determinant b(p) in (1.6) converges absolutely 
and uniformly E31 in every bounded region Z of the complex plane p. The 
product of the diagonal elements A(p) of the determinant d(p) can be re- 
presented in the fotm 
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(1.9j 

in The sum of all the nondiagonal elements of the determinant A(p) 

(1.8) is dominated by the convergent series 

1 5 i -@b,(p+(k+q)i) I<2 s k” i 1 akq l;xn;( e-‘kP 

“z? ==-l k=l q=-1 
920 

j (1.10) 

Formulas (1.9) and (1.10) imply the absolute convergence of the de- 

terminant A(p) of (1.8) if p E 1. If in (1.7) and (1.8) we take a deter- 
minant of finite order, then we obtain an approximate solution f(p). Its 
original function will be taken as an approximate solution of Equation 
(1.1) with the conditions (1.2). 

l 2. Let us consider the analytic properties of the determinant A(p) in 
(1.8). From what has been said it follows that A(p) is an entire function 

of P* and also of the parameters a 
kg’ 

Tk (1.1). The center element c(p) 
of the determinant A(p) 

c (P) = pa + 2 a/(0 e-?kp 
k=O 

is an entire function of p. This function has no zeros when Re p > a, if 

a is sufficiently large. The product of the equation of the diagonal 
elements A(p) in (1.9) is a periodic function of p of period i because 

A (p + i) = c (p + i)ik ,$, [- k-” c (p + (k + 1) i] = c (p) lim i [- k-2 c @+ 

kfo 
‘-*03 k;=-or 

+ ki)[ lim c (P + (r + 1) i) = A (p) 
c (p - ri) (2.2) 

We shall make use of the notation 

cq (P) = b, (P + gi) [d + bo @)I-’ (2.3) 

If we move the diagonal element of each row of the determinant (1.8) 
behind the symbol for the determinant, we obtain 

A (P) = D (P) A (P) (24) 

where D(p) is a new convergent determinant 
. . . . . . . . . . . . . . . . . 

D(p) = : 
1 

Cl (PI 
c-1 (; + i) u..(;)i) : 

* ca (p - 4 CI (p - 4 1 * 
. . . . . . . . . . . . . . . . 

(2.5) 
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It is obvious that the determinaut D(p) is periodic of period i. 

Hence, we have proved the following theorem. 

Theorem 2. I. Hill’s determinant A(p) in (1.8), constructed for the 

differential equation (1.1) with periodic coefficients and stationary lag 

of the argument, is an entire periodic function of p with period i. 

From (2.5), (2.3) and (1.4) it follows that D(p) - 1 when Re p - + a. 

Since 6, (p) - aOO in (1.4) when Re p _ + a, we obtain, by retaining the 
term with largest absolute Value, the asymptotic expression for A(p) of 
(1.9) when Re p - + Q), 

(2.6) 

In the particular case when the lags 7,, in (1.1) are multiples of 2a. 

the function b,!~) in (1.4) will be periodln. with period i, and we obtain, 

when Re p - t q the equation 

II 

0 
- 

k=o 

(2.7). 

Let us m&e the following substitution in (1.8) 

p = exp {- 2np) (2.8) 

Because of the periodicity of the determinant A(p), the function 

Q, (P) = PA (- &- In p ) 4na = I+ 0 (p), P’O (2.9) 

is a single-valued function without finite poles, namely, it is an entire 

function of p, By Weierstrass’ theorem [2, p.4071 we have 

(2.10) 

Here g(p) is an entire function of p, g(0) = 0, the p, are the zeros 

of CD(p) when n l mP and the k, are certain integers which will guarantee 

the convergence of (2.10). Making use of the notation pi = - 0.5 r-lln pj, 
we obtain from (2.10) and (2.9) the general form of the analytic repre- 

sentation of I(P) in (1.8): 

A (P) = 0,25~-~ exp 12np1 exp k (exp (-- 2~~1) x 

x f i - exp (2n (pj - P))) exp (231 (pj-p)) +.. + ir?_ CXP (21tk, (pj - p))) (2.11) 
,1 

n= 
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g(p)=glp+g?;)a+gsp3+...+, lim ?Ig,!=(4 Rep, + -M when n -+ 00 
n-+30 

(2.12) 

The determination of the behavior of the numbers p, and gn when n - m 

is still an unsolved problem. 

3. The problem of the stability of the solutions of Equation (1. I) in- 

volves the evaluation of the characteristic exponents p, of the solution 

of Equation (1.1). From theorem 2.1 it follows that the transform f(p) 

(1.7) of the solution y(t) is a meromorphic functi?n of p with poles at 

the points 

pnk =p,,+ki (n = 1,2 ,..., k = 0, f 1, 5 2 ,,.,) (3.1) 

If we seek the original function y(t) with the aid tf the expansion 

given on p. 483 of [A, we obtain the next theorem. 

Theorem 3.1. The solution y(d) of Equation (1.1) with the initial con- 

ditions (1.2) can always be elcpanded into a series of the type 

y(t) = g YJn w* y,(f)= 5 (P,jp’ + P,pt+...+P,/y t’n,,(Pn+W (3.2) 
- 
?a=1 k=-co 

where r,, + 1 is the multiplicity of the zero p, of the determinant 

(1.8). 

If we substitute y,(t) from (3.2) into (1.1) we find that z,(t) 

indeed a solvtion of Equation (1.1). 

A(P) 

is 

The rquat ions for pnk (‘) will be satisfied because Equation; (1.3) and 

(~,a) are satisfied by f(p) which has poles of order rn + 1 at the 

peints P,& (3.1). 

Hence, y,(t) is an entire function of t, and the series for y,(t) 

(3.2) converges absolutely and uniformly for all finite values of t. This 

implies the asymptotic nature of the series (3.2). Thus we obtsin the 

next theorem. 

Theorem 3.2. The solution y(t) of Equation (1.1) with the conditions 

(1.2) can always be expanded into an asymptotic series, with t -. 00. of 

the form 

y(t) = s epnL @p(f) + an(l)(t) t+...+p (f) tTn) (3.3) 
n=r 

Ilere a,( r’ ( t f 2s) Z on( r, ( t), Re p, - - m when n - + a, md rn t 1 

stands for the multiplicity of the zero p n ?f the determinant A(p) (1.8). 
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We may assume, without loss of generality, that Re p1 2 lb p2 2 Re p3 > 

. . . Then we have the following result if Re p* < Re pk+ 1: 

k 

y (t) - 2 yn (t) exp (p*‘l} = 0 
TI=l I 

(3.4) 

Theorem 3.2 Dermits us to draw certain conclusions about the stability 

of the solutions of Equation (1.1) if we know the zeros p, of the deter- 

minant Ap. This theorem can be extended to systems of linear differential 

equations with periodic coefficients and with stationary lags of the 

argument, see for example [3]. In order to find the characteristic ex- 

ponents pn. one can make use of the conditions for the existence of the 

solution y(t) of Equation (1.1) in the form 

y (t) = ept (3.5) 
k=--a, 

4. We shall consider the Mathieu equation 

@Y w 
d,” + AY (t) + 2py (t - t) c.os 2 = 0 (4.1) 

Here h, p > 0, and -r > 0 are real parameters. Equation (1.3) takes on 

the form 

(p2 + h) f (p) $ ~e-(Pfsi)~ f (p + 2i) + @-‘P--2i)S f (p - 2i) =: 9 (p) (4.2) 

The solution of a difference equation of the type (4.2) is given in 

[4. p. 9831. 

From the determinant A(p) one can obtain the equation [41 

fo (PI - s (I4 - h (p) = 0 (4.3) 

where the notation of [4. p.9841 iS used: 

fo (P) = P2 + 1, fl (PI = f-, (PI = Pe-ps* 0 = 2i (4.4) 

0 (P) = 
fl (P + 0) f-1 (P) (4.5) 

fo(P+o) - 

h(P+wf_l(P+N' h(p)= 

f-1 (P - 0) fl (PI 

fo(Il-C2(1~1-. . . 

f 
0 

(p+o)_ f-,(P--Wfl(P---o) 

fo(p-220)-. . . 

For Equation (4.1) with A # k2 (k = 0, 1, 2, . . .) Equation (4.3) takes 
on the form 

pe-25(Pfi) p2c-2~(p-i) 

P2 + ii -(p+ 2i)2+1,-(p_ 2i)2 + h + O(P') =O (4.6) 
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From Equation (4.6) we find the characteristic exponent p, which is 
near iJ h f or small values of p 

p=iJf/h+i *&_i)(cos20fh cos 22 + I/X sin 2r sin 2r VK) + 

+ 4 vx:; _ h) (sin 22 V/h cos 2~ - V/ii cos 2t J& sin 2r) + 0 (p4) (4.7) 

If the lag T > 0 is sufficiently small, then 

Re p = - -$ @V + 0 (I par6 J + ) p4 [) (4.8) 

The solutions (4.1) will be asymptotically stable for small enough 
values p > 0, -r > 0, and h # k2 (k = 0, 1, 2, . ..). Suppose that AzO.25. 
Then (4.7) yields 

Rep---p sins v + 0 (~4) (4.9) 

For large values of the lag T > 0, ,(2n + 1)~ < -r < (2n + 2)~ (n = 0, 

1, 2, . . . ), and for sufficiently smell values of u > 0, the solutions of 
Equation (4.1) are unstable. 

5. For the investigation of the resonance A = k2 (k = 0, 1, 2, . . .) 

in Equation (4.1). we shall make use of the following lemma. 

Lenma 5.1. Let q(p. IA) be a holomorphic function of p and p when 

lcll < E and (p( < E. Let us consider the equation 

cp (P* c’) = a0 (I4 + a1 w P + Qt w P” + as (Id pa + * * * = 0 (5.1) 

0 (ao) = 0 (pa), 0 (Ql) = (IL), O(a,)=O(i) (n=2,3,...), aa( 

If it is known that two of the smallest (in absolute value) roots pl, 

p2 of Equation (5.1) are conjugates of each other, then a necessary and 
sufficient condition for the negativeness of the Re p1 and Re p2 is given 

by 

s(6, N=co(IL)>O (5.2) 

aoa3at’J 
al - + 

aoa3a4 (ala8 - a04 
a** - alus (aa* - w3Y + 0 (P4) > 0 (5.3) 

The proof of this lemma can be obtained from Heierstrass’s theorem 
[5, p.91 by dividing ~(p, ~0 of (5.1) by a factor, a quadratic function 
of p. and with the use of Hurwitz’s condition [2, p.4271. 

Example 5.1. We shall determine the conditions for the stability of 
the solutions of Equation (4.1) when u = 0, A = 0. Applying the Lemma 
5.1 to Equation (4.6) sad taking into account the terms of order less 
than 0(p6 + p’]Al + A2p2), we obtain the conditions for stability when 
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h + 0..5 pa cos 2r + 0.125 p’L cos 27 + &OS w>o (5.4) 

j.52 -T- I( tS+ + 5% 
) 

cos2r+ 
( 

fj-$-A+) sin2r]+p4[(-G-z)+ 

+(+-T) ( cos4r + - & + g )sinlZ-&cos6~+&sin6~]>0 (5.5) 

When T = 0, the condition (5.4) reduces to Mathieu’s criterion for 
stability. The Condition (5.5) is the second nonobvious criterion for 
stability. When T > 0 is small, the latter criterion takes on the form 

4 
Y$ par3 + 0 (I Pat5 I -f I ILah. I + I P4 I) > 0 (5.6) 

Exarple .5.2. We shall find the conditions for stability of the solu- 

tions of Equation (4.1) when Ih - 11, and 11.11 are small. 

Let us rewrite the condition (4.3) in a more convenient form (2i = 0) 

if0 (A - s (P)l VO (P - 24 - h (p - WI = f-t (p - 2i) fl (p) (5.7) 

After the substitution of (4.4) into Equation (5.7), the latter takes 
the form 

ps,--eT(P+i) @-4+(P+2i) 

P+“-((p+2i)*+~-[(p+2i)z+J,]~[(p+4i)~+~]+o(~o) 
F2S-2t(P-si) pr,-a+(P+di) 

- (p-&)2+~- [(p-_i)a +~]a I(~_- Gi)a+J,] +O(p') = Cl'e-27(P-i) 1 (5.8) 

Let us set p = i + z in (5.8). Expanding (5.8) in powers of Z. and 
making use of Lemma 5.1, we obtain the inequalities 

p* cos 45 
k--l+ Q__1 + 

p4 cos 12x 2 u4 sina 4r 
1536 + 64 ) > pa + 0 (P6 + IL4 I J. - 1 I) (5.9) 

4 
3 p2t’a + 0 (p2 (h - 1)O -t CL%.5 + P4) > 0 (5.10) 

Example 5.3. Let us investigate the stability of the Mathieu equation 
with lag and friction 

@v w G(t) 
%+PCT + hy (t) + 2p cos 2t y (t - z) = 0, c>o (5.11) 

when IA - 11, Id are sufficiently small. For the purpose of finding the 
characteristic exponents it is advisable to use (5.7), where one has to 
set 



1142 K.G. Valeev 

lo (P) = Pa + PCP $_ k, fl (P) = f+ (P) = veAp7. 0 = 2i (5.12) 

Equation (5.7) now takes the form 

pa + lLcp + A - (p + 2i)a + pc (p + 2i)‘+ A +0(P) (P-W2+pc(p-2i)+I- I[ 
y3e-3’(P-3i) 

- (p + 4i)Z + pc (p + 4i) + h + 0 W) 
3 = IL2e-2r(P-‘) (5.13) 

Expanding Equation (5.13) in powers of z = p - i, and applying Lemma 

5.1, we obtain the following conditions for stability: 

( h-1$ Py4fy+pa( c - $ sin 4r)a > p2 + 0 (pp + p3 11-l I) (5.14) 

pc + $ pata + 0 (p8 + pw + pa (h - I)2 > 0 (5.15) 

6. In the determination of the characteristic exponents it is con- 

venient to transform the infinite determinant of Hill (1.8). (2.5) into 

a determinant of finite order, as is done in [61 . Let us consider the 
differential equation 

a], cos kty (t - Q) = 0, h < r,<O (6.1) 
k-l k=l 

The difference equation for f(p) (1.3) has the form 

(pa $ h) f (p) + IL 5 ak (e-Tk(p+ki) f (p + ki) + e-rk(P-ki) f (P - ki) = ‘p (P) (6.2) 

k=l 

Suppose that Ihl << 1, IpI << 1. When u = 0, the poles of f(p) are at 

* \J -A. Hence, one can look for the zeros of the determinant A(p) (1.8) 

in the region 1 

IhI<‘% tILl<s* IPI<& (6.3) 

Let us transfer the diagonal element in each row of the determinant 

A(p) behind the symbol of the determinant, except for the one in the 

central row. For small E > 0, the diagonal elements -k-*[(p + ki) * + Al 
(k # 0) have no zeros in the region (6.3). Therefore, the remaining de- 

terminant Det D1(p) of the matrix D1(p) converges in the region (6.3). 

Hence we have 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1 c_, (P + i) C_*(Pfi) - 

4 (A = ’ pal exp (- T51 (P + 4 d + I. pal exp {- TI : 
(P 4 cl (P i) 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

(6.4) 

ck (PI = p W + k)-‘alkl e=p l- Tk (p + WI 

> is small, the of determinants A(p) (1.8) and 
Det D1(p) coincide in (6.3). Let us consider the auxiliary infinite 
matrix R(p) with the determinant in (6.3) not equal to zero 

I...........,...... 

. 1 c-l (P + 4 c+ (P + i) - 
R (PI = : 0 1 0 * Det R (p) # 0 

, c2 (P - i) cl (P - 4 
1 : PEZ 

. . . . . . . . . . . . . . . . . . . 

(6.6) 

The matrix R(p) coincides with the matrix D1(p) (6.4) except for the 
center row, where all the elements are replaced by zeros while the 
diagonal element is replaced by one. 

Therefore, in the matrix DI(p) R-‘(p) there will be (except for the 
center row) ones along the diagonal and zeros off the diagonal. Det 
(DI(p) R-‘(p)) reduces to a scalar function of p 

Det (Dl (p) R-l (P)) = Det D1 (p) Det R-l (p), Det R-’ (~1 # 0 P E 2 (6.7) 

Let us find the matrix (E + C(p))-‘, where 

. i ‘0’ 0 : 
E= 10 IO. c (PI = 

‘0 0 1’ 
. . . . . . 

. . . . ..I......... . . 

0 c-lb+ i) b(P+ i) . 
. Cl (PI 0 c-1 (PI . (6.8) 
: c2 (P - i) Cl (P - i) 0 .I 
. . . . . . . . . . . . . . . . . . 

(E + C (PI)-’ = E - C (P) + Ca (P) - Cs (P) + . . . (6.9) 

If we eliminate from the matrix (E + C(p))-’ the elements ck(p), 

which can have poles in the region 1 (6.3). then we obtain R”(p), and 
the equation A(p) = 0 takes on the form 

aga_k exp I- Tk (p + ki) - t-]cpl + 

R=-_os (P + W + h 
Ii+0 

+ ” - ’ ’ . = 0 (6.10) 

“E-G? 
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It is assumed here that rk = v_k, ak = a_k. In other cases, A = 0.25k2 

(k = 1, 2, . . .), and one has to proceed in a similar manner but leave two 
rows unchanged, the center one and the kth one. Making use of Lemma 5.1, 
we obtain the condition for stability of the solutions of Equation (6.1) 
when IhI and 1 CI/ are small: 

1 + 2p 5 ak2 ‘OS ktk 

kEl P--h 
+ 0 (Pa) > 0 (6.11) 

(6.12) 

The second of these conditions is not independent on the first one. 
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